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This article, written by members
of the International Union of
Basic and Clinical Pharmacology
Committee on Receptor
Nomenclature and Drug
Classification (NC-IUPHAR)
subcommittee for the dopamine
receptors, confirms the existing
nomenclature for these receptors
and reviews our current
understanding of their structure,
pharmacology and functions and
their likely physiological roles in
health and disease. More
information on these receptor
families can be found in the
Concise Guide to
PHARMACOLOGY
(http://onlinelibrary.wiley.com/
doi/10.1111/bph.12445/abstract)
and for each member of the
family in the corresponding
database http://www
.guidetopharmacology.org/GRAC/
FamilyDisplayForward?familyId
=20&familyType=GPCR.

The variety of physiological functions controlled by dopamine in the brain and
periphery is mediated by the D1, D2, D3, D4 and D5 dopamine GPCRs. Drugs acting
on dopamine receptors are significant tools for the management of several
neuropsychiatric disorders including schizophrenia, bipolar disorder, depression and
Parkinson’s disease. Recent investigations of dopamine receptor signalling have
shown that dopamine receptors, apart from their canonical action on
cAMP-mediated signalling, can regulate a myriad of cellular responses to fine-tune
the expression of dopamine-associated behaviours and functions. Such signalling
mechanisms may involve alternate G protein coupling or non-G protein
mechanisms involving ion channels, receptor tyrosine kinases or proteins such as
β-arrestins that are classically involved in GPCR desensitization. Another level of
complexity is the growing appreciation of the physiological roles played by
dopamine receptor heteromers. Applications of new in vivo techniques have
significantly furthered the understanding of the physiological functions played by
dopamine receptors. Here we provide an update of the current knowledge
regarding the complex biology, signalling, physiology and pharmacology of
dopamine receptors.

Abbreviations
βArr2, β-arrestin 2; BDNF, brain-derived neurotrophic factor; CaMKII, Ca2+/calmodulin-dependent PK II; CDK5,
cyclin-dependent kinase 5; DAT, dopamine transporter; DARPP-32, dopamine and cAMP-regulated phosphoprotein,
32 kDa; GluA1, glutamate receptor, ionotropic, AMPA 1 subunit; GluN2B, glutamate receptor, ionotropic, NMDA 2B
subunit; GIRKs, G protein coupled inwardly rectifying potassium channels; GSK3, glycogen synthase kinase; HTT,
huntingtin; KO, knockout; IP3, inositol trisphosphate; PDK, phosphatidylinositol-dependent kinase; PP1, protein
phosphatase 1; PP2A, protein phosphatase 2A; rpS6, ribosomal protein S6; RTK, receptor tyrosine kinases; TCS1/2,
tuberous sclerosis proteins 1 and 2; TrkB, neurotrophic tyrosine kinase, receptor, type 2.
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Introduction

Five subtypes of dopamine receptors (D1, D2, D3, D4 and D5

receptors, encoded in humans by genes DRD1, DRD2, DRD3,
DRD4 and DRD5, respectively) are known to mediate essen-
tially all of the physiological functions of dopamine. These
functions include, but are not limited to, the following: vol-
untary movement, reward, sleep regulation, feeding, affect,
attention, cognitive function, olfaction, vision, hormonal
regulation, sympathetic regulation and penile erection.
Dopamine receptors are also known to influence the immune
system as well as cardiovascular, renal and gastrointestinal
functions. As members of the GPCR superfamily, dopamine
receptors have a canonical seven-transmembrane structure
and can signal through both G protein-dependent and
-independent mechanisms. Based on coupling to either Gαs,olf

proteins or Gαi/o proteins to stimulate or inhibit the produc-
tion of the second messenger cAMP, respectively, dopamine
receptors are classified as D1-class receptors (D1 and D5) or
D2-class receptors (D2, D3 and D4) (Kebabian, 1978; Spano
et al., 1978). The alternative splicing of D2 results in the
generation of two major D2 dopamine receptor variants that
differ in the presence of an additional 29 amino acids on the
third intracellular loop with distinct physiological, signalling
and pharmacological properties, and are classified as D2S (D2-
short) and D2L (D2-long). Dopamine receptors are well-
established targets in the clinical pharmacology of numerous
disorders and conditions such as schizophrenia, Parkinson’s

disease, bipolar disorder, depression, restless leg syndrome,
hyperprolactinaemia, pituitary tumours, hypertension, gas-
troparesis, nausea and erectile dysfunction. The basic princi-
ples of dopamine receptor structure, signalling, function and
pharmacology are covered in detail in several excellent
reviews (Niznik and Van Tol, 1992; Sibley and Monsma, 1992;
Sokoloff et al., 1992; Civelli et al., 1993; Missale et al., 1998;
Vallone et al., 2000; Carlsson, 2001; Seeman, 2006). Recently,
we have provided a comprehensive overview of the field in
Pharmacological Reviews (Beaulieu and Gainetdinov, 2011).
However, although the basic information regarding the struc-
tural, genetic and biochemical properties of dopamine recep-
tors has remained essentially unchanged in the last 4 years, a
significant amount of new information has emerged on dopa-
mine receptor signalling, functional relevance and pharma-
cology that requires an update of the status of current
knowledge. Here we will focus on newly emerging topics and
trends in understanding dopamine receptor biology as well as
topics that were not covered or only partially discussed in our
previous review (Beaulieu and Gainetdinov, 2011).

Mechanisms of dopamine
receptor signalling

The prevailing convention was that dopamine receptors
were considered to signal exclusively through G protein-
dependent cellular processes. The D1-class receptors (D1 and
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D5 receptors) are primarily coupled to Gαs/olf proteins and
stimulate the activity of AC and the production of the second
messenger cAMP (Figure 1). In contrast, the D2 class receptors
(D2S, D2L, D3 and D4 receptors) are associated with Gαi/o pro-
teins to inhibit the production of cAMP (Kebabian, 1978;
Spano et al., 1978) (Figure 2).

Modulation of cAMP synthesis by dopamine receptors
results in the regulation of PKA and potentially of other
exchange proteins activated by cAMP (Epac1 and Epac2)
(Svenningsson et al., 2004; Beaulieu and Gainetdinov, 2011).
Among PKA substrates, the multifunctional dopamine and
cAMP-regulated phosphoprotein (DARPP-32/PPP1R1B) has
been extensively studied over the last 30 years. When phos-
phorylated on Thr34 by PKA, DARPP-32 is a negative regulator
of protein phosphatase 1 (PP1). In contrast, phosphorylation
of DARPP-32 on Thr75 by cyclin-dependent kinase 5 (CDK5),
in response to sustained D1 receptor activation, results in PKA
inhibition (Figures 1 and 2). The roles of PKA and DARPP-32
in dopamine receptor signalling are well characterized, and
strong evidence supports their contribution to the physi-
ological functions of dopamine receptors (Svenningsson
et al., 2004; Girault, 2012).

cAMP-mediated signalling and
mRNA translation
An interesting development in the characterization of cAMP-
mediated dopamine receptor signalling involves its recently

appreciated contribution to the regulation of mRNA transla-
tion mechanisms. Either D1 receptor activation or D2 receptor
blockade by haloperidol has been shown to promote the
phosphorylation of the ribosomal protein S6 (rpS6) on
Ser235/236 and Ser240/244 (Santini et al., 2009; Valjent et al., 2011).
Phosphorylation of rpS6 on these and adjacent residues results
in enhanced CAP-dependent mRNA translation (Roux et al.,
2007; Hutchinson et al., 2011). Increased phosphorylation of
rpS6 via D1 receptors would involve activation of PKA, subse-
quent inhibition of PP1 by DARPP-32 and activation of the
mammalian target of rapamycin (mTOR) complex 1 (Santini
et al., 2009; 2012; Bonito-Oliva et al., 2013). In medium spiny
neurons expressing D2 receptors, activation of PKA and
DARPP-32 by the adenosine A2A receptors also plays a role
(Valjent et al., 2001; 2011; Santini et al., 2009), whereas acti-
vation of ERK signalling by a DARPP-32-dependent mecha-
nisms are thought to be involved in D1 receptor-expressing
medium spiny neurons (Santini et al., 2012). Interestingly,
D1 receptor stimulation also promotes rpS6 phosphorylation
in the dentate gyrus, albeit through a different, mTOR-
independent, pathway involving ERK activation (Gangarossa
and Valjent, 2012). Understanding the overall importance of
dopamine receptor-mediated regulation of rpS6 on mRNA
translation and behaviour is still in its infancy. However,
preliminary evidence supports its involvement in the devel-
opment of L–DOPA-induced dyskinesia (Santini et al., 2009;
2012; Subramaniam et al., 2012) and cocaine sensitization,
seeking and relapse behaviours (Wu et al., 2011).

cAMP-independent dopamine
receptor signalling
In addition to the regulation of cAMP, several studies have
revealed that dopamine receptors can exert some of their
biological effects through alternative signalling pathways
(Beaulieu et al., 2004; 2005; Hasbi et al., 2009). For instance,
there are indications that both D1 and D2 receptors can trans-
activate the brain-derived neurotrophic factor (BDNF) recep-
tor in neurons (Swift et al., 2011). These two dopamine
receptors can also regulate calcium channels through a direct
protein–protein interaction in vivo (Kisilevsky and Zamponi,
2008; Kisilevsky et al., 2008). Direct interaction of D1 and D2

receptors and Na+-K+-ATPase has also been demonstrated
(Hazelwood et al., 2008; Blom et al., 2012). Under certain
circumstances, dopamine receptors can also regulate IP3-
mediated signalling (Medvedev et al., 2013; Perreault et al.,
2014), and there is evidence for alternative coupling of
D1-class receptors to Gαq (Figure 1).

The D2-class D2 and D3 receptors have been shown to
signal through both G protein-dependent and G protein-
independent mechanisms (Beaulieu and Gainetdinov, 2011).
G protein-dependent mechanisms for D2 dopamine receptors
are represented by the well-known Gαi/o subunit-mediated
cAMP-PKA-DARPP32 cascade (Svenningsson et al., 2004) and
the Gβγ-mediated activation of PLC, leading to increased
cytoplasmic calcium and downstream signalling events
(Hernandez-Lopez et al., 2000; Beaulieu and Gainetdinov,
2011). Furthermore, Gβγ-mediated mechanisms are in-
volved in the regulation of activity of the L- and N-type
calcium channels (Yan et al., 1997) as well as G protein
coupled inwardly rectifying potassium channels (GIRKs)
(Kuzhikandathil et al., 1998; Beaulieu and Gainetdinov,

Figure 1
Schematic diagram representing the signalling cascades activated by
the D1 dopamine receptor (D1R). D5R, D5 dopamine receptor;
D1R:D2R, D1–D2 receptor heteromer.
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2011). Recent evidence indicates that all of these G protein-
mediated signalling cascades converge on, among other
targets, phosphorylation of two subunits of ionotropic gluta-
mate receptors, GluA1 and GluN2B, which are critically
involved in glutamatergic transmission (Jenkins and
Traynelis, 2012; Dell’anno et al., 2013; Hobson et al., 2013; Jia
et al., 2013; Song et al., 2013; Flores-Barrera et al., 2014;
Jenkins et al., 2014; Murphy et al., 2014) (Figure 2).

Finally, there is strong evidence that D2 dopamine recep-
tors can signal in vivo by activating cAMP-independent
mechanisms involving the multifunctional adaptor protein
β-arrestin 2 (βArr2) (Beaulieu et al., 2004; 2005; 2008b; Urs
et al., 2012) (Figure 2). In the remaining parts of this subsec-
tion, we will provide an overview of recent evidence under-
scoring the importance of cAMP-independent mechanisms in
dopamine receptor function.

Coupling of dopamine receptors to Gαq
Several lines of evidence support the regulation of PLC and
calcium signalling by dopamine receptors. As early as 1989,
Felder et al. reported that the D1 receptor agonist SKF 82526
stimulates PLC activity independently of cAMP in renal
tubular membranes (Felder et al., 1989). Activation of PLC

leads to the production of inositol trisphosphate (IP3) and
DAG. This results in the activation of PKC by DAG and an
increased mobilization of intracellular calcium in response to
IP3 (Berridge, 2009). The increase of intracellular calcium in
the cytoplasm leads to the activation of calcium-dependent
PKC variants as well as calcium-regulated enzymes, such as
the calcium/calmodulin-dependent PK II (CaMKII) and the
protein phosphatase calcineurin/protein phosphatase 2B
(PP2B).

The most common way for a GPCR to regulate PLC activ-
ity is by coupling to Gαq. Putative D1–D2 receptor heterodi-
mers have been suggested to regulate DAG and IP3 signalling
by activating Gαq/11 in transfected cells as well as in striatal
membrane preparations (Lee et al., 2004; Rashid et al.,
2007b). The physiological relevance of D1–D2 receptor heter-
odimers is supported by the co-expression of D1 and D2 recep-
tors in small populations of medium spiny neurons of the
nucleus accumbens in the mouse (Rashid et al., 2007b) and in
other regions of the basal ganglia (Perreault et al., 2010).
Notably, analysis of BAC transgenic mice that express fluo-
rescent gene-reporter proteins driven by D1 and D2 receptor
promoters showed that the majority of D1 receptor-positive
pyramidal neurons in the prefrontal cortex also express low

Figure 2
Schematic diagram representing the signalling cascades activated by the D2 dopamine receptor (D2R). BMAL1, aryl hydrocarbon receptor nuclear
translocator-like protein; Clock, circadian locomotor output cycles kaput gene; Cry2, cryptochrome 2; KLC2, kinesin light chain 2; Rev/Erbα,
nuclear receptor subfamily 1, group D, member 1.
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levels of D2 receptors (Zhang et al., 2010). In addition to
co-expression studies, FRET studies conducted with fluores-
cent proteins in transfected cells and treatments of tissue
sections with labelled antibodies have produced results that
suggest the formation of receptor heterodimers (Rashid et al.,
2007b; Perreault et al., 2013).

Despite accumulating evidence, the involvement of D1–D2

receptor heterodimers in the regulation of PLC-mediated sig-
nalling in vivo remains poorly understood. It should be noted
that recent studies have questioned the selectivity (Chun
et al., 2013) and PLC activity (Lee et al., 2014) of the putative
D1–D2 receptor heteromer agonist SKF 83959 that was used to
characterize the role of D1–D2 receptor heterodimers in the
regulation of PLC in vivo (Rashid et al., 2007b). One impor-
tant aspect of D1–D2 heterodimer signalling in cells is the
requirement of co-activation of both the D1 and D2 receptor
moiety to activate Gαq/11. Furthermore, the formation of the
D1–D2 receptor heterodimers would prevent coupling of
either receptors to Gαs/olf or Gαi/o (Perreault et al., 2014). This
theory, however, is in contrast with several in vivo observa-
tions supporting the regulation of PLC by D1-class receptors
without the need for D2 receptor involvement. It was recently
reported that acute systemic administration of cocaine,
amphetamine, apomorphine or the D1-class receptor agonist
SKF 81297 to wild-type mice increases striatal IP3 synthesis
(Medvedev et al., 2013). Co-treatments with selective antago-
nists as well as the use of D1 and D2 receptor knockout (KO)
animals revealed that the production of IP3 in response to
these pharmacological treatments requires D1, but not D2

receptor activation. Importantly, PLCβ inhibition suppressed
spontaneous locomotor hyperactivity in hyperdopaminergic
mice lacking the dopamine transporter (DAT) and antago-
nized the effects of amphetamine, cocaine, SKF 81297 and
apomorphine on forward locomotion. Furthermore, the res-
toration of locomotion by L-DOPA in dopamine-depleted
mice (Sotnikova et al., 2005) is also reduced by inhibition of
PLCβ resulting in mostly vertical activity following these
treatments (Medvedev et al., 2013). These data strongly
support a contribution of PLC in mediating the effects of
dopamine on forward locomotion. However, further investi-
gation is necessary to decipher the relative contribution of
different modes of PLC regulation on the various aspects of
dopamine-related behaviours.

At the same time, expression of D1 receptors in transfected
HEK293 cells does not affect intracellular calcium signalling.
However, expression of D5 receptors in the same cells induces
extensive calcium mobilization after stimulation (So et al.,
2009), and the D1-class receptor agonist SKF 38393 activates
PLC-mediated signalling in D1 receptor KO mice (Friedman
et al., 1997). Furthermore, this same agonist, as well as dopa-
mine and SKF 83959, failed to increase IP3 levels in brain
slices prepared from mice lacking D5 receptors (Sahu et al.,
2009). A similar lack of responsiveness of PLC-mediated sig-
nalling to SKF 83959 was also reported following systemic
administration of this compound to D5 receptor KO mice
(Sahu et al., 2009), suggesting that activation of D5 receptors
is sufficient to activate Gαq/11 in response to selected doses of
certain D1-class receptor agonists.

Thus, several independent studies support the regulation
of PLC-mediated signalling through dopamine receptors,
however, these studies are in disagreement with regard to the

detailed mechanism of this regulation. Current evidence does
not allow us to rule out the contributions of D1 receptors, D5

receptors or D1–D2 receptor heterodimers in this phenom-
enon (Figure 1). Discrepancies between the results of different
research groups raise the possibility that several mechanisms
may be involved, perhaps in different neuronal populations.
It is also conceivable that different D1-class receptor agonists
may be functionally selective for PLC-mediated mechanisms
when activating D1 receptors, D5 receptors or D1–D2 receptor
heterodimers.

Beyond the question of its detailed mechanism, activa-
tion of PLC-mediated signalling by dopamine also raises the
question of possible crosstalk between this modality of sig-
nalling and cAMP-mediated mechanisms. Among several
possibilities, activation of PKC and CaMKII through calcium
signalling could affect glutamate receptors concomitantly
with PKA (Figure 1). Different mechanisms involving either
positive or negative regulation of CDK5 by calcium may also
be an important nexus for crosstalk. For instance, PKC has
previously been shown to prevent the phosphorylation of
DARPP-32 and other substrates by CDK5 (Sahin et al., 2008).
Because the global activity of DARPP-32 is modulated by an
equilibrium between its phosphorylation by CDK5 and PKA
(Bibb et al., 1999) it is possible that Gαq/11-mediated dopamin-
ergic signalling may reduce the phosphorylation of
DARPP-32 by CDK5 and potentiate PKA-mediated signalling
(Figure 1). In contrast, cleavage of the CDK5 co-activator p35
by the calcium-regulated protease calpain (Lee et al., 2000;
Beaulieu and Julien, 2003) may result in CDK5 hyperactivity
and an inhibition of PKA signalling. Furthermore, changes in
calcium concentration may also affect the activity of PP2B
(calcineurin), which is involved in the dephosphorylation of
DARPP-32 at Thr34 (Halpain et al., 1990). Overall, the full
understanding of the regulation of PLC activity by dopamine
remains incomplete yet holds promise for exciting future
investigations.

Coupling of D2-class receptors to βArr2, Akt
and glycogen synthase kinase (GSK3)
G protein-independent D2 receptor signalling is represented
by βArr2-mediated mechanisms. Arrestins are a family of four
molecular adaptor proteins that were originally characterized
for their role in mediating GPCR desensitization and inter-
nalization (Lohse et al., 1990; Ferguson et al., 1996). In addi-
tion to these functions, the two ubiquitous arrestins, βArr1
and βArr2, have also been shown to act as molecular scaffolds
for signalling molecules such as kinases and phosphatases
(Luttrell et al., 2001; Beaulieu et al., 2005).

Several lines of evidence have pointed towards the con-
tribution of a βArr-mediated mechanism in the regulation of
the serine/threonine kinases Akt and GSK3 by dopamine. Akt
is involved in several cellular processes such as glucose
metabolism, gene transcription, cell proliferation, migration
and neurotrophin action through the stimulation of receptor
tyrosine kinases (RTKs) (Cross et al., 1995; Alessi et al., 1996;
Scheid and Woodgett, 2001). Activation of RTKs and some
GPCRs regulates PI3K, which converts phosphatidylinositol-
2-phosphate (PIP2) to phosphatidylinositol-3-phosphate
(PIP3) (Martelli et al., 2010). This newly formed PIP3 interacts
with the pleckstrin homology domain of Akt, inducing the
recruitment of Akt to the plasma membrane. This, in turn,
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results in the phosphorylation of Akt at the Thr308 and Ser473

residues by two phosphatidylinositol-dependent kinases,
PDK1 and PDK2/rictor-mTOR respectively (Scheid and
Woodgett, 2001; Jacinto et al., 2006). Once activated, Akt
phosphorylates several substrates including GSK3 (Rossig
et al., 2002). Mammalian cells express two isoforms of GSK3,
GSK3α and GSK3β, which are constitutively active and can
phosphorylate several cellular substrates (Woodgett, 1990;
Kaidanovich-Belin and Woodgett, 2011). Phosphorylation by
Akt inhibits both isoforms of GSK3 in response to growth
factors and hormones, including insulin, IGF, and BDNF
(Yamada et al., 2002; Altar et al., 2008). Specifically, Akt phos-
phorylates Ser21 on GSK3α and Ser9 on GSK3β, which are
located on their respective N-terminal domains (Stambolic
and Woodgett, 1994; Frame and Cohen, 2001).

Experiments using dopamine receptor agonists/
antagonists, dopamine depletion and hyperdopaminergic
DAT-KO mice have provided converging evidence for the
negative regulation of Akt, resulting in the activation of both
GSK3 isoforms by D2-class receptors in mammals and other
vertebrates (Beaulieu et al., 2004; Bychkov et al., 2007; Chen
et al., 2007; Souza et al., 2011). Consequently, D2-class recep-
tor antagonists induce Akt activation and subsequent GSK3
inhibition (Beaulieu et al., 2004; Emamian et al., 2004). Addi-
tional investigations conducted using mice lacking various
dopamine receptors have shown that a loss of D2, but not D1

receptors prevents the inactivation of striatal Akt by drugs
acting on dopamine neurotransmission (Beaulieu et al.,
2007b). In contrast, D3 receptor-deficient mice exhibit a
reduction of Akt phosphorylation in response to dopaminer-
gic drugs. This suggests that D2 receptors are critical for the
inhibition of Akt by dopamine, whereas the D3 receptors
appear to potentiate the D2 receptor-mediated dopamine
response (Beaulieu et al., 2007b).

The role of βArr2 in mediating the regulation of Akt and
GSK3 by D2 receptors is supported by direct in vivo biochemi-
cal observations in pharmacological and genetic models of
enhanced dopaminergic neurotransmission (Beaulieu et al.,
2004; 2005). Amphetamine and apomorphine have been
shown to inhibit the phosphorylation and activation of Akt
in the striatum of wild-type mice, whereas these two drugs
failed to inhibit Akt in βArr2-KO mice. Furthermore, regula-
tion of Akt and GSK3 signalling observed in mice with geneti-
cally increased dopaminergic tone caused by a lack of DAT,
was absent in double mutant mice deficient for both DAT and
βArr2, suggesting an important role of this scaffolding
protein in Akt regulation by dopamine (Beaulieu et al., 2005).
Further characterization of the molecular mechanisms under-
lying the regulation of Akt by D2 receptors, following receptor
stimulation has shown that βArr2 is involved in the forma-
tion of a protein complex composed of Akt, βArr2 and
protein phosphatase 2A (PP2A) (Beaulieu et al., 2005). Forma-
tion of this complex allows PP2A to dephosphorylate and
inactivate Akt, resulting in the activation of GSK3 (Beaulieu
et al., 2004; 2005).

It is worth mentioning that the formation of the
Akt : βArr2 : PP2A signalling complex in response to D2 recep-
tor activation represents a mechanism through which dopa-
mine can trigger the inactivation of PI3K/Akt signalling in a
regulated fashion. Importantly, the Akt : βArr2 : PP2A signal-
ling complex dissociates in response to lithium, thus provid-

ing a probable explanation for the early behavioural
observations of the antagonistic effect of lithium on dopa-
minergic behaviours as well as a reasonable mechanism for
the activation of Akt by lithium (Beaulieu and Caron, 2008a;
O’Brien et al., 2011; Pan et al., 2011). The details of the
mechanism(s) by which lithium triggers this dissociation are
not yet fully understood. Current evidence suggests that
lithium may affect the stability of this complex by acting on
several of its components, possibly in a synergistic fashion.
First, lithium has been shown to interfere with the interac-
tion of Akt1 and βArr2 (Beaulieu et al., 2008b). Direct inves-
tigation of the Akt–βArr2 interaction using recombinant
proteins have demonstrated that this interaction is depend-
ent upon the presence of magnesium ions and that excess
magnesium can prevent the dissociation of Akt and βArr2
upon treatment with a therapeutic dose of lithium (1 mM).
Second, GSK3β has also been shown to interact with βArr2.
Recent evidence obtained from transgenic mice overexpress-
ing Xenopus GSK3β in neurons indicate that activated GSK3
can act as a feed-forward mechanism for its own activation
(Figure 2) by stabilizing the Akt : βArr2 : PP2A signalling
complex (O’Brien et al., 2011). According to this model,
direct inhibition of GSK3 by lithium would thus constitute
a mechanism that can promote the disassembly of the
Akt : βArr2 : PP2A.

The effect of βArr2-mediated Akt/GSK3 signalling on
dopaminergic behaviours is supported by several experimen-
tal observations in vivo. βArr2-KO mice have been shown to
display spontaneous locomotor hypoactivity, reduced
apomorphine-induced climbing and amphetamine-induced
hyperlocomotion (Gainetdinov et al., 2004; Beaulieu et al.,
2005). These mice also have a reduced responsiveness to the
dopamine-dependent locomotor effects of morphine (Bohn
et al., 2003). In addition, novelty-driven locomotor hyperac-
tivity, a phenotype that is typical of hyperdopaminergic
DAT-KO mice, is less pronounced in double mutant mice
lacking both βArr2 and DAT (Beaulieu et al., 2005). Adminis-
tration of lithium exerts multiple actions on behaviours in
DAT-KO and normal mice, including suppression of sponta-
neous locomotor activity, but this was not observed in
βArr2-KO mice (Beaulieu et al., 2004; 2005). In line with these
data, mice lacking Akt1 demonstrate an enhanced sensitivity
to amphetamine with regard to the disruption of sensorimo-
tor gating in the pre-pulse inhibition (PPI) test, which is used
to model psychosis in rodents (Emamian et al., 2004). As
described above, Akt1 is inhibited following the stimulation
of D2 receptors, thus the increased behavioural effect of
amphetamine in Akt1-KO mice is likely to result from the
involvement of Akt in dopaminergic behavioural responses.

Genetic suppression of GSK3 activity also inhibits loco-
motor hyperactivity related to excessive dopaminergic tone
in amphetamine-treated mice (Beaulieu et al., 2004). Simi-
larly, several GSK3 inhibitors as well as GSK3β haploinsuffi-
ciency can block amphetamine-induced hyperactivity
(Beaulieu et al., 2004; Gould et al., 2004; Kalinichev and
Dawson, 2011). In contrast, mice overexpressing GSK3β show
pronounced locomotor hyperactivity (Prickaerts et al., 2006),
and transgenic mice expressing a GSK3β mutant that lacks an
inhibitory phosphorylation site (thus is constitutively active)
demonstrate increased novelty-driven and amphetamine-
induced hyperactivity (Polter et al., 2010).
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More recent evidence obtained using strains of cell type-
specific conditional GSK3β-KO mice have generated a more
nuanced portrait of the contribution of GSK3β in the regula-
tion of dopaminergic behaviour. Ablation of GSK3β expres-
sion specifically in D1 or D2 receptor-expressing striatal
neurons (Urs et al., 2012) confirmed the selective contribu-
tion of GSK3β to the acute action of amphetamine on loco-
motion in D2 but not D1 receptor-expressing neurons. The
antagonistic action of the D2 receptor partial agonist aripipra-
zole and lithium on amphetamine-induced locomotion is
also curbed in mice lacking GSK3β in D2 receptor-expressing
neurons. In contrast, haloperidol-induced catalepsy is not
affected by diminished GSK3β expression in either D1 or D2

receptor-expressing striatal neurons, whereas the disruptive
effects of amphetamine on sensory motor gating is abolished
by in either D1 or D2 receptor-expressing neuron-selective
GSK3β gene inactivation. Taken together, these observations
confirm the role of βArr2-mediated regulation of GSK3β in D2

receptor-expressing neurons in the effects of amphetamine,
lithium and aripiprazole on locomotion. The fact that
haloperidol-induced catalepsy remains intact in mice lacking
GSK3β suggests the involvement of at least two separate sig-
nalling pathways mediating the effects of antipsychotics and
strengthens the rationale for the development of biased D2

receptor antagonists to selectively target these pathways in
schizophrenia (Beaulieu et al., 2007a; Beaulieu, 2012). Further
confirmation of these hypotheses should come from repeat-
ing these experiments in mice lacking βArr2 in specific neu-
ronal populations.

Selective ablation of GSK3β post-natally in forebrain
pyramidal neurons revealed other functions of GSK3β in the
regulation of dopamine-associated behaviours (Latapy et al.,
2012). The locomotor effects of amphetamine are marginally
increased in these mice, which suggests a minor role of cor-
tical neurons in the modulation of amphetamine action and
further indicates that the opposing effect of GSK3β inhibition
on amphetamine-induced locomotion is mediated by GSK3β
in subcortical structures. Additionally, these mice display
reduced anxiety and enhanced social interactions. Investiga-
tion of the possible contribution of GSK3β in behavioural
responses to social defeat stress (Wilkinson et al., 2011;
Latapy et al., 2012) using either conditional forebrain KO
mice, GSK3β haplo-insufficient mice or mice expressing a
dominant negative GSK3 in the nucleus accumbens also
revealed a role for subcortical GSK3β inhibition in mediating
resilience to this form of stress. This emphasizes the need to
further examine the contribution of GSK3-mediated dopa-
mine receptor signalling in coping behaviours.

Beyond its potential involvement in the action of
lithium, βArr2-mediated D2 receptor signalling can also con-
tribute to effects of antipsychotics. Characterization of the
effects of different antipsychotics using BRET in transfected
HEK293 cells revealed that first-generation antipsychotics
(chlorpromazine, haloperidol), as well as second- (clozapine,
quetiapine, olanzapine, risperidone, ziprasidone) and third-
(aripiprazole) generation antipsychotics potently antagonize
quinpirole-induced βArr2 recruitment to D2 receptors (Masri
et al., 2008). In contrast, strong differences existed in the
potency of these drugs in preventing inhibition of cAMP
synthesis by D2 receptors. Of interest, D2 receptor partial
agonist aripiprazole displayed partial D2 receptor agonist

activity for cAMP-mediated signalling in the absence of quin-
pirole while functioning as an antagonist for cAMP when
quinpirole was applied concomitantly. Because second- and
third-generation antipsychotics are characterized by fewer
extrapyramidal side effects, this study led to the hypothesis
that identification of functionally selective D2 receptor
antagonists that specifically prevent βArr2 recruitment to D2

receptors may pave the way for the development of new
antipsychotics that would have fewer side effects while
retaining their therapeutic activity.

This hypothesis led to the development of new aripipra-
zole derivative compounds: UNC9975, UNC0006 and
UNC9994, which display antipsychotic-like activity in
rodents (Allen et al., 2011). In the absence of a full agonist,
these three compounds have the distinction of acting as
partial D2 agonist for βArr2 recruitment without affecting
cAMP. It should be noted, however, that these compounds
may not be fully functionally selective as Allen et al. also
reported that they can act as neutral antagonists for cAMP-
mediated D2 signalling. It is also noteworthy that aripiprazole
behaves as a partial agonist for βArr2 recruitment when
applied alone on cells (Allen et al., 2011) while acting as an
antagonist of βArr2 recruitment when simultaneously
applied with quinpirole (Masri et al., 2008). It is thus possible
that the UNC compounds may display different pharmaco-
logical properties when applied alone in vitro and in the
context of an active dopamine tone in vivo where they might
antagonize both cAMP and βArr2 mediated D2 receptor sig-
nalling through a combination of neutral antagonism and
partial agonism.

Overall, βArr2-mediated D2 receptor signalling provides
interesting avenues for the development of new drugs target-
ing dopamine neurotransmission. However, it is unclear at
the moment whether this type of intervention will be more
suited for clinical interventions in schizophrenia or bipolar
disorder. Indeed, this form of signalling is directly targeted by
lithium (Beaulieu et al., 2004; 2008b), a drug that has very
limited efficacy for the treatment of schizophrenia.

Protein phosphatase metallo-dependent
(PPM/PP2C) and Gαi/o mediated regulation of
huntingtin (HTT) protein phosphorylation by
D2 receptors
Recent investigation has revealed a role of D2 receptors in the
regulation of the phosphorylation of the HTT protein on
Ser421 (Marion et al., 2014). It is known that phosphorylation
of HTT on this residue by Akt in response to IGF-1 leads to
reduction of the formation of nuclear inclusions and HTT
toxicity (Humbert et al., 2002; Rangone et al., 2004). Intrigu-
ingly, D2 receptor stimulation reduces the phosphorylation of
HTT on this residue in heterologous cells and in the mouse
striatum (Marion et al., 2014). The molecular mechanism of
this regulation appears not to involve the regulation of Akt by
D2 receptors. Instead, the regulation of HTT phosphorylation
by D2 receptors involves the activation of Gαi/o and the for-
mation of a protein complex between HTT and D2 receptors.
Indeed, treatment of transfected cells with the Gαi/o inhibitor,
Pertussis toxin, prevented the dephosphorylation of HTT in
response to D2 receptor stimulation. Furthermore, the study
revealed the formation of a protein complex comprising D2
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receptors, HTT and two members of the PPM/PP2C family.
The first of these phosphatases, PPM1A, was shown to inter-
act directly with HTT in vivo whereas the second phosphatase,
PPM1B as well as HTT interact directly with the D2 receptors.
While it is not clear at the moment if PPM1A and B both
participate in HTT dephosphorylation and the contribution
of cAMP-mediated mechanisms has remained unexplored,
the potential involvement of this mechanism in the regula-
tion of HTT toxicity certainly warrants further investigations.

Transactivation of RTK by
dopamine receptors
RTKs are a major family of cell surface receptors involved in
many functions in neuronal and non-neuronal cell types
(Lemmon and Schlessinger, 2010). Members of this family
include, among others, the BDNF receptor neurotrophic
tyrosine kinase, receptor, type 2 (TrkB), EGF/neuregulin
family receptors (ErbB family) and receptors for insulin and
insulin-like growth factor 1 (IGFR1). Activation of RTKs by
their cognate ligands enhances receptor dimer formation,
internalization, and recruitment of monomeric receptors to
the cell surface. RTK activation generally results in a concomi-
tant rapid activation of several signalling pathways, includ-
ing PI3K/Akt, Ras/MAPK and PLC-mediated signalling
(Figure 2).

In addition to direct activation by their ligands, RTKs can
also be transactivated by GPCRs (Eguchi et al., 1998;
Maudsley et al., 2000; Rajagopal et al., 2004). However, the
molecular mechanisms of this transactivation are not clearly
understood. Independent investigations conducted in differ-
ent systems have underscored the possible contribution of
both G protein- and arrestin-mediated mechanisms involving
either direct activation of RTK by intracellular processes or
autocrine/paracrine RTK activation following ligand shed-
ding in response to GPCR activation.

Dopamine receptors have been shown to transactivate
RTKs in different experimental systems (Figure 3). The D4

receptor was shown to transactivate the platelet-derived
growth factor β (PDGFβ) receptor, and D2 receptors were able
to transactivate IGF receptors in heterologous cell systems
(Chi et al., 2010; Mannoury la Cour et al., 2011). Further-
more, both D1 and D2 receptors can transactivate ErbB-1 in
transfected CHO-K1 cells (Swift et al., 2011) and primary
neuron cultures (Iwakura et al., 2011; Yoon and Baik, 2013).
Finally, D1, D2 and potentially D1–D2 receptor heteromers
have been shown to transactivate the BDNF receptor in cul-
tured striatal neurons (Iwakura et al., 2008; Swift et al., 2011;
Barbeau et al., 2013). Systemic administration of the D1-class
receptor agonist SKF 38393 also increased TrkB activation at 3
and 6 h following drug injection in 4-day-old rats (Iwakura
et al., 2008). The treatment of rats with the D1 receptor
antagonist SCH23390 reduced striatal TrkB activation, sug-
gesting that transactivation of TrkB by D1 receptors occurs in
response to normal endogenous dopamine tone.

The mechanisms by which dopamine receptors transacti-
vate RTKs are not fully understood. Quantitative pharmaco-
logical characterization of ErbB-1 receptors by various GPCRs
has shown that these phenomena are not restricted by the
coupling of the GPCR to a different G protein (Swift et al.,
2011). Increased release of the RTK ligand BDNF does not
appear to be essential for the transactivation of TrkB by D1

receptors (Iwakura et al., 2008). However, release of EGF
appears to play a role in the transactivation of ErbB-1 by D2

receptors in cultured neurons (Iwakura et al., 2011; Yoon and
Baik, 2013). Interestingly, stimulation of either frontal cortex
D5 receptors (Perreault et al., 2013) or striatal D1–D2 receptors
(Hasbi et al., 2009) has also been reported to increase BDNF
levels, therefore potentially leading to increased TrkB activa-
tion in response to dopamine receptor stimulation.

Transactivation of RTKs by dopamine receptors can have
a major effect on our understanding of dopamine receptor
signalling in vivo. RTKs are coupled to several signalling
mechanisms that can elicit cellular responses, which are
beyond the direct effect of G protein or arrestin-mediated
cellular responses. For instance, although D2 receptor stimu-
lation leads to a βArr2-dependent inactivation of Akt and
concomitant activation of GSK3 in vivo, the opposite has been
reported to occur in heterologous cell systems and, in some
cases, cultured neurons (Brami-Cherrier et al., 2005; Beaulieu,
2012). It has recently been shown that activation of Akt by
recombinant D2 receptors in transfected cells can be attrib-
uted to the transactivation of IGFR and concomitant activa-
tion of PI3K-mediated signalling by this RTK (Mannoury la
Cour et al., 2011). It is also possible that some instances of
MAPK and PLC-mediated signalling in response to dopamine
receptor activation may also result from RTK transactivation
(Figure 3). The apparent involvement of RTK ligand release in
the transactivation of some RTKs by dopamine receptors also
raises the possibility that activation of dopamine receptors in
dopaminoceptive neurons may elicit paracrine signalling
responses to dopamine in either non-dopaminoceptive
neurons or non-neuronal cells, possibly leading to indirect
regional effects of dopamine receptor stimulation. This type
of regional responses may be important considering the
potential role of TrkB, and probably other RTKs, in regulating
drug-induced reward (Lobo et al., 2013).

Figure 3
Mechanisms and signalling events involved in the transactivation of
RTK by dopamine receptors. Raf, proto-oncogene serine/threonine-
PK; Ras, rat sarcoma family of small GTPases.
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Dopamine receptor oligomerization

Historically, GPCRs are believed to function as monomeric
units, but now there is mounting evidence indicating that
several GPCRs can exist in oligomeric forms (Perreault et al.,
2014). Regarding dopamine receptors, they can form both
homomers and heteromers with several receptors, including
other GPCRs and ionotropic glutamate receptors (Guo et al.,
2008; Van Craenenbroeck et al., 2011; Perreault et al., 2014).
Some of these interactions may be regulated via mechanisms
likely orchestrated by AC and cAMP (Woods and Jackson,
2013). A study by the Javitch group suggested that D2 recep-
tor homodimers and a G protein exist as the minimal single
functional unit, which is maximally activated by the binding
of an agonist to only one protomer and is either negatively
or positively modulated by the ligand to the other protomer
of an agonist or an inverse agonist respectively (Han et al.,
2009). This allosteric modulation between the two protomers
of the complex is mediated through intermolecular interac-
tions by the direct association among receptors and not by
downstream effects. The development of RET-based tech-
niques has been of fundamental importance in the discovery
and characterization of many homomers and heteromers
and is now considered to be the preferred biophysical
method in describing complex formations (Milligan, 2004;
Pfleger and Eidne, 2006; Marullo and Bouvier, 2007;
Salahpour et al., 2012). Both BRET and FRET rely on the
principle of a non-radiative energy transfer between a donor
protein and a fluorescent acceptor. In case of FRET, the donor
is also a fluorescent protein (e.g., CFP), whereas in BRET, the
donor is an enzyme (Renilla luciferase) that produces biolu-
minescence upon the degradation of a substrate (coelentera-
zine h or derivatives) (Pfleger and Eidne, 2006). Because the
energy transfer is only possible when the donor and the
acceptor are closer than 10 nm, when two proteins fused to
a donor and an acceptor produce a BRET or FRET signal, it is
an indication of a physical contact (Pfleger and Eidne, 2006;
Marullo and Bouvier, 2007; Lohse et al., 2012). However, a
simple BRET or FRET signal is insufficient to distinguish true
heterodimerization from a random collision; thus many
experimental approaches have been adopted to characterize
a putative heterodimer, such as saturation curves, competi-
tion assays and others (Marullo and Bouvier, 2007; Salahpour
and Masri, 2007). Although these approaches have been
extremely useful to study various complexes in cellular
systems, these methods cannot simply be applied directly in
native tissue, although there are some examples of successful
applications in vivo using FRET with selective fluorescent
ligands (Albizu et al., 2010) or antibodies (Perreault et al.,
2010). After the in vitro description of the heterodimer and
the characterization of its functional features, it is more
common to prove the existence of the complex in native
tissue using indirect evidence, such as identifying the ‘bio-
chemical fingerprint’ and reproducing the specific character-
istics of the complex and/or analysing physiological or
behavioural responses to co-activation of the receptors (Ferre
and Franco, 2010). In this section, we limit our discussion
only to the heterodimers formed by dopamine receptors that
have at least partial validation in studies in native tissue
and/or in vivo.

D1–D2 receptor heterodimer
As mentioned earlier, D1 and D2 receptors can form a heter-
odimer complex that has been shown to exist in a heterolo-
gous system and in primary striatal neurons as well as in vivo
in the rodent brain (Perreault et al., 2013; 2014). Several
techniques have been used to characterize this complex,
ranging from classic biochemical approaches, including
co-immunoprecipitation of the two proteins (Lee et al.,
2004), to more accurate techniques such as quantitative FRET
(Dziedzicka-Wasylewska et al., 2006; Hasbi et al., 2009;
Perreault et al., 2010). The expression and cellular localiza-
tion of D1–D2 receptor heterodimers has been characterized
not only in cells, but also in vivo, primarily in rat striatum.
Studies from BAC transgenic mice demonstrate that the
majority of the D1- and D2 receptor-expressing neurons are
segregated in two different populations, although a small
percentage of neurons express both receptors, ranging from a
6% in caudate putamen to a 15–30% in nucleus accumbens
(Bertran-Gonzalez et al., 2008; Perreault et al., 2010). These
MSNs expressing D1 and D2 receptors are interesting in that
they express both dynorphin and enkephalin; thus, one
might consider them to be a third, distinct subset on MSNs.
Among these, not all of the neurons show constitutive D1–D2

receptor heterodimer formation. Although a small propor-
tion of caudate putamen MSNs revealed a D1–D2 receptor
complex, in most of the neurons (90%) expressing both D1

and D2 receptors in the nucleus accumbens, these receptors
are present as heterodimers (Perreault et al., 2010). As men-
tioned earlier, this occurs under basal conditions, and it has
been shown that several stimuli and pathological conditions
could alter the state and the proportion of D1–D2 heterodi-
mers (Dziedzicka-Wasylewska et al., 2006; Perreault et al.,
2010). A peculiar aspect of this heterodimer is that it has a
unique pharmacology that is distinct from that of its single
protomer (Figure 1). Activation of the D1–D2 receptor
complex induces the recruitment of the Gαq/11 protein,
leading to the release of calcium from the internal stores
(Rashid et al., 2007a,b; Hasbi et al., 2009). It appears that D1

and D2 receptors are both necessary for this pathway, thus the
application of dopamine or a combination of two selective D1

and D2 receptor agonists are able to increase intracellular
calcium, whereas treatment with either a D1 or D2 receptor
antagonist can abolish this effect (Hasbi et al., 2009).

A selective D1–D2 receptor heteromer agonist (SKF 83959)
has also been described: (Rashid et al., 2007b). It should be
noted, however, that a recent report argues the selectivity of
this compound by showing that this effect is dependent on
the level of Gαq/11 expression in cells and there could be a
contribution from the Gβγ subunits and GRK2 on the calcium
increase induced by the D1–D2 receptor heterodimer (Chun
et al., 2013), while another report questioned in general the
ability of SKF 83959 to influence PLC (Lee et al., 2014). It has
been suggested that this heteromer may play a role in brain
disorders such as addiction (Perreault et al., 2010), schizo-
phrenia (Dziedzicka-Wasylewska et al., 2008) and major
depression (Pei et al., 2010), although additional evidence is
needed to support these hypotheses.

D1-D3 receptor heterodimers
D1 and D3 receptors are co-expressed in the majority of the
substance P – expressing GABAergic medium spiny neurons,
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suggesting that there could be functional crosstalk between
these two receptors. Two independent studies have demon-
strated that D1 and D3 receptors can form a constitutive het-
erodimer (Fiorentini et al., 2008; Marcellino et al., 2008).
Using BRET and FRET techniques in transfected cells, it has
been shown that D1 and D3 receptors can physically interact
with no change in complex formation upon agonist treat-
ment. Moreover, using co-immunoprecipitation, it was pos-
sible to isolate the D1–D3 complex from striatal membranes,
confirming the existence of this heteromer in the brain. This
cooperativity between D1 and D3 receptors is also evident in
behavioural experiments. It is known that activation of D1

receptors stimulates locomotor activity, whereas the role of
D3 receptors is less clear. In reserpinized mice (a model to
isolate postsynaptic effects), D3 receptor agonists can poten-
tiate the stimulatory effects of D1, but not D2 receptor ago-
nists. Furthermore, this potentiation can be counteracted
with a D3 receptor antagonist and is not present in D3 recep-
tor KO mice (Marcellino et al., 2008). It has been suggested
that the functional synergy of the D1–D3 dimer could be
important for processes related to drug addiction and
L–DOPA-induced dyskinesia in Parkinson’s disease. It will be
of interest to further characterize the physiological relevance
of the D1–D3 heterodimer in other dopamine-related func-
tions and pathologies.

D2–D4 receptor heterodimers
Both the long and the short D2 receptor isoforms can associ-
ate with D4 receptors, (Borroto-Escuela et al., 2011b; Gonzalez
et al., 2012b). Using BRET, co-immunoprecipitation and prox-
imity ligation assay, it has been shown in cell culture that D2L

receptors can exist in a heterodimeric form with the major
variants of the D4 receptors: D4.2, D4.4 and D4.7, with D4.7 being
the least effective in forming the complex (Borroto-Escuela
et al., 2011b). Ferrè and colleagues showed with BRET that D2S

receptors can also associate in a heterodimer complex with
the two variants D4.2 and D4.4, but not with the variant D4.7

(Gonzalez et al., 2012b). This study revealed a biochemical
fingerprint for this heteromer that could potentiate D4 recep-
tor activation of MAPK. In the mouse striatum, although the
single activation of either D2 or D4 receptors had no effect on
MAPK, co-administration of D2 and D4 receptor agonists
induced a strong ERK phosphorylation response (Gonzalez
et al., 2012b). This synergistic activity was lost in knock-in
mice carrying the D4.7 variant, demonstrating the lack of
mutual functional interaction between these two receptors.
Moreover, the same synergistic effect was observed as regard
to the ability of D4 receptors to modulate glutamate release in
the striatum (Gonzalez et al., 2012b).

Dopamine receptor/NMDA receptor heteromer
Many studies have reported D1 receptor-mediated modula-
tion of NMDA activity, primarily through a G protein-
dependent mechanism involving the cAMP/PKA pathway
and proteins such as DARPP-32 (Blank et al., 1997). However,
there is evidence indicating that NMDA receptors and D1

receptors could also interact physically. A first study demon-
strated the existence of this complex in hippocampal extracts
by co-immunoprecipitation (Lee et al., 2002). It has been
described that there are two sites of interaction in the
carboxy-terminal domain of D1 receptor: one interacts with

the GluN1 (NR1) subunit and the other with the GluN2A
(NR2A) subunit. Each of these sites is responsible for a specific
functional characteristic of the complex. These data were
confirmed by another group in BRET studies that showed D1

receptors and GluN1 forming a constitutive heterodimer in
cells (Fiorentini et al., 2003). Interestingly, the D1–GluN1
complex is formed early in the ER and is translocated to the
membrane only upon association with the GluN2B (NR2B)
subunit (Fiorentini et al., 2003). When at the cell membrane,
the D1 receptors involved in this complex lose the ability to
desensitize and internalize upon stimulation, suggesting a
dual role of this receptor in native tissue depending on micro-
domain localization and aggregation with NMDA receptors,
as previously reported (Dumartin et al., 1998). The activation
of D1 receptors leads to a decrease of NMDA receptor func-
tionality, as measured by NMDA-mediated currents in HEK
cells and hippocampal neurons. This loss of activity is likely
due to a decrease of NMDA receptor expression to the plasma
membrane mediated by GluN2A subunit (Lee et al., 2002). D1

receptor agonists could reduce the cytotoxicity induced by an
overactivation of the NMDA receptors. This effect appears to
be mediated through a PI3K mechanism dependent on the
GluN1 subunit instead of the reduction of the calcium influx
(Lee et al., 2002). In another study (Nai et al., 2010), D1 recep-
tor activation in hippocampal slices increased the NMDA-
dependent long-term potentiation, as previously reported
(Huang and Kandel, 1995). This effect could be abolished by
disrupting the heteromer with specific interfering peptides.
This interaction can have important functional consequence
on cognition, as disruption of the D1–NMDA complex led to
working memory impairment (Nai et al., 2010).

Another reported interaction with NMDA receptors is
between D2 receptors and GluN2B (Liu et al., 2006). It has
been demonstrated that in both the dorsal striatum and
nucleus accumbens, D2 receptors and GluN2B are clustered in
the PSD and form a complex that is more prevalent upon
systemic cocaine treatment. Cocaine is also able to produce a
selective decrease in the phosphorylation of Ser1303 on the
GluN2B subunit. This decrease is D2 receptor-dependent,
blocked by antagonist treatment, enhanced by agonist treat-
ment and mediated by CaMKII. Cocaine treatment induces a
D2 receptor-dependent decrease in CaMKII activity, and its
association with GluN2B results in the decrease of phospho-
rylation of Ser1303. Functionally, cocaine application to striatal
neurons causes a decrease in NMDA-mediated currents, an
effect that can be abolished by heteromer disruption using a
selective peptide that prevents the binding between the third
intracellular loop of D2 receptors and the carboxy-terminal
tail of GluN2B. Furthermore, disruption of the D2-GluN2B
heteromer prevents phosphorylation of GluN2B and reduces
cocaine-stimulated locomotor activity.

Adenosine receptor/dopamine
receptor complexes
Many studies have shown that adenosine and dopamine
exert opposing effects in the basal ganglia, with adenosine
receptor agonists generally suppressing motor response and
antagonists inducing motor activation (Ferre et al., 1997).
Because the adenosine A1 receptor is expressed mainly in
striato-nigral neurons, which also express dopamine D1

receptors, and the adenosine A2A receptor is expressed
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predominantly in striato-pallidal neurons, which express D2

receptors, it is suggested that A1-D1 and A2A-D2 heteromers
might exist and have discrete localization in the basal ganglia
(Fuxe et al., 2010). Thus, heterodimer formation has been
reported and extensively characterized for the A1–D1 complex
(Gines et al., 2000; Toda et al., 2003) and the A2A–D2 complex
(Hillion et al., 2002; Canals et al., 2003) using different bio-
physical approaches. In both complexes, both A1 and A2A

receptor activation can antagonize the cAMP responses upon
either D1 or D2 receptor stimulation in transfected cells (Ferre
et al., 1991; Gines et al., 2000). For these reasons, it has been
proposed that these complexes could be of importance as
novel approach to treat some dopamine-related diseases such
as Parkinson’s disease and schizophrenia. Particularly, A2A

receptor antagonists, which can act as potentiators of the
dopamine response, could be applied as adjunct therapy with
D2 receptor agonists and L-DOPA for the locomotor impair-
ments present in Parkinson’s disease patients (Fuxe et al.,
2007). In fact, A2A receptor antagonists have been shown to
improve motor deficits in several animal models of Parkin-
son’s disease as well as demonstrate anti-parkinsonian prop-
erties in clinical trials (Fuxe et al., 2008) and reduce L–DOPA-
induced dyskinesia (Chase et al., 2003). At the same time, A2A

receptor agonists showed an antipsychotic-like profile in dif-
ferent schizophrenia models, both in rodents (Rimondini
et al., 1997) and non-human primates (Andersen et al., 2002).
The mechanism proposed on the basis of these effects is the
ability of A2A receptor agonists to reduce D2 receptor agonist
binding and G protein coupling, particularly in the nucleus
accumbens. Because the A2A–D2 heteromer can internalize as
one unit, these agonists can also reduce D2 receptor availabil-
ity at the plasma membrane (Hillion et al., 2002).

Other dopamine receptor heterodimers
Another example how dopamine receptors can alter their
signalling pathways comes from a study on the D2 -ghrelin
receptor heterodimer (Kern et al., 2012). The ghrelin receptor
is a GPCR expressed in different regions of the brain that can
be activated by the stomach peptide ghrelin (Kojima et al.,
1999). In the hypothalamus, the ghrelin receptor and D2

receptors are co-expressed, and using time-resolved FRET
experiments, it has been shown that these two receptors form
a heterodimer in native tissue (Kern et al., 2012). Moreover,
when co-expressed with the ghrelin receptor, D2 receptors are
able to elicit a calcium response dependent on PLC activa-
tion, IP3 receptors and intracellular calcium stores. Interest-
ingly, Gαq is not responsible for this increase, but rather the
Gβγ subunit, derived from Gαi activation, mediates this effect
likely through the direct association with GRK2 and direct
stimulation of PLC (Inglese et al., 1994; Koch et al., 1994).
This heterodimer formation appears to have an important
role in appetite, as the suppression of food intake induced by
a dopamine D2 receptor agonist was prevented by a ghrelin
antagonist and was absent in ghrelin-KO mice, demonstrat-
ing the importance of this heterodimer in physiology.

One interesting example how dimerization can alter the
physiological functions of each protomer is the case of the
D4-β1 adrenoceptor and D4-α1B adrenoceptor heteromers
(Gonzalez et al., 2012a). D4 receptors are highly expressed in
the pineal gland, and their expression follows a circadian
rhythm, being high at the beginning of the light cycle and

low at the end (Bai et al., 2008). The role of the pineal gland
is to translate light inputs from the retina by producing and
secreting melatonin, a product of serotonin. In this brain
region, β1 and α1B adrenoceptors are the primary receptors
that control this mechanism. In transfected cells, Gonzalez
and colleagues proved the existence of these two heterodi-
mers using BRET, and they also used a proximity ligation
assay to demonstrate their presence in vivo in the pineal
gland. Similar to the circadian nature of D4 receptors, these
complexes were found only at the beginning of the light
cycle (Gonzalez et al., 2012a). A distinctive biochemical prop-
erty of these heterodimers was the modulation of ERK and
Akt activity. When co-expressed in the same cells or when
naturally present in native tissue, treatment with a D4 recep-
tor agonist was able to reduce ERK and Akt phosphorylation
induced by β1 and α1B adrenergic receptors. Similarly, D4

receptor antagonists prevent MAPK and Akt activation
induced by β1 or α1B adrenoceptors, and adrenoceptor antago-
nists could block D4 receptor stimulation of these pathways,
showing a cross-antagonist property of this heterodimer. This
functional interaction between D4, β1 and α1B receptors was
also reflected by the production and release of serotonin and
melatonin, with a circadian regulation mediated by D4 recep-
tors and its modulation of β1 and α1B adrenoceptor activity
(Gonzalez et al., 2012a).

One GPCR that has emerged as a novel modulator of the
dopamine system is the trace amine-associated receptor 1
(TA1, known also as TAAR1) (Borowsky et al., 2001; Sotnikova
et al., 2009; Espinoza et al., 2011). The TA1 receptor is
expressed in several areas innervated by dopaminergic termi-
nals such as the basal ganglia and frontal cortex, as well as in
regions containing monoaminergic nuclei, including dopa-
minergic neurons in the ventral tegmental area (Lindemann
et al., 2008). Several studies have shown that the TA1 receptor
can modulate dopaminergic activities such as D2 receptor
function and the firing rate of dopaminergic neurons
(Lindemann et al., 2008; Bradaia et al., 2009; Espinoza et al.,
2011). Moreover, TA1 receptor agonists have been shown to
influence effects of a wide range of dopaminergic agents and
related behaviours such as amphetamine-induced hyperactiv-
ity (Revel et al., 2011) and cocaine self-administration (Revel
et al., 2012), and are effective as antipsychotic compounds in
several models of schizophrenia against positive, negative
and cognitive symptoms (Revel et al., 2013). One mechanism
through which TA1 receptors can influence the dopamine
system is by forming a heterodimer with D2 receptors. Using
BRET, it has been demonstrated that TA1 receptors can form a
constitutive heterodimer with D2, but not with D1 receptors
(Espinoza et al., 2011; 2013), and that this heteromer can be
disrupted by the D2 receptor antagonist haloperidol. This
functional interaction exerts its effect in modulating the
cAMP pathway and haloperidol could potentiate TA1

receptor-mediated cAMP signalling in cells. Furthermore,
haloperidol’s effects, such as c-Fos induction in the striatum
and catalepsy, were reduced in TA1 receptor-KO mice indicat-
ing prominent interaction between D2 and TA1 receptors at
the levels of postsynaptic structures (Espinoza et al., 2011).
The D2–TA1 receptor interaction can also play an important
role in presynaptic regulation of dopaminergic transmission
by modulating D2 receptor autoreceptor functions via TA1

receptors (Leo et al., 2014).
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Other developments and
emerging trends

Newly identified functions mediated by
dopamine receptors
Recent studies that often employed newly developed
approaches and tools have revealed novel functions mediated
by dopamine receptors and clarified the contribution of spe-
cific subtypes to previously established functions. Several
observations regarding the functional role of dopamine
receptors have been made using transgenic techniques. In
addition to gene KO studies, which have been described in
previous reviews (Sibley, 1999; Holmes et al., 2004; Beaulieu
and Gainetdinov, 2011), mice overexpressing D2 and D3

receptors have been recently characterized. Particularly, mice
selectively overexpressing D2 receptors in the striatum have
persistent abnormalities in prefrontal cortex function and
deficits in working memory and behavioural flexibility
(Kellendonk et al., 2006), as well as motivation (Simpson
et al., 2012) and timing precision (Ward et al., 2009) deficits
that are often found of schizophrenia models. These mutants
also demonstrated altered dendritic morphology of medium
spiny neurons via involvement of Kir2 channels (Cazorla
et al., 2012), and a deficit in inhibitory GABA-mediated trans-
mission and dopamine sensitivity in the prefrontal cortex (Li
et al., 2011b). Taken together, these studies indicated an
important role for the striatal processes in the pathogenesis of
the cognitive symptoms of schizophrenia. Based on this
model, overstimulation or excessive D2 receptor activity in
the striatum leads to altered functioning of prefrontal cortex
neurons via several mechanisms, culminating in deficiencies
in executive function and working memory – key compo-
nents of schizophrenia-related deficits (Simpson et al., 2010).
In contrast, mice overexpressing D3 receptors in the striatum
have less pronounced, but still significant phenotype. They
do not demonstrate cognitive deficits, but show disrupted
motivation, suggesting that targeting D3 receptors may have
effect on motivational symptoms, which are not improved by
the currently available antipsychotics in schizophrenic
patients (Simpson et al., 2014).

In another study, a role of subpopulation of D1 receptor-
expressing cholinergic neurons in putative antipsychotic
action of the M4 muscarinic receptor agonist xanomeline was
demonstrated (Dencker et al., 2011). In mutant mice lacking
the M4 muscarinic receptors only in D1 dopamine receptor-
expressing cells, the antipsychotic-like effects of xanomeline
were completely abolished suggesting that M4 muscarinic
receptors co-localized with D1 receptors are involved.

Several recent observations have indicated that the direct
modulation of the DAT function by D2 receptors might occur
(Chen et al., 2013) and this interaction has physiological or
pathological relevance (Bowton et al., 2010; Owens et al.,
2012); however, no alterations in DAT function were found in
D2 autoreceptor KO mice (Bello et al., 2011). Based on studies
involving mice that constitutively express only the short
isoform D2S or lacking both isoforms, it has been proposed
that D2L is the major postsynaptic isoform expressed in
medium spiny GABA neurons while D2S is predominantly
expressed on presynaptic terminals and involved in autore-
ceptor function (Lindgren et al., 2003). However, recent study

with virus-mediated receptor restoration in D2 receptor KO
mice has indicated that both these alternatively spliced forms
of the D2 receptors are equally capable of acting as postsyn-
aptic receptors and autoreceptors (Neve et al., 2013). Interest-
ingly, while the role of presynaptic D2 receptors in
autoreceptor regulation of dopamine neuron firing rate, as
well as dopamine synthesis and release is well established
(Bello et al., 2011), a recent study involving cell-specific KO
mice has shown a significant contribution of postsynaptic D2

receptors in the local feedback regulation of dopaminergic
transmission in the dorsal striatum as well (Anzalone et al.,
2012). As D3 receptors are also shown to contribute to the
regulation of dopamine release and are expressed both at
the presynaptic terminals and postsynaptic structures
(Gainetdinov et al., 1996; Joseph et al., 2002; Gross et al.,
2013), it would be of interest to explore if postsynaptic D3

receptors could be involved in the regulation of presynaptic
transmission via similar local feedback mechanisms.

Application of optogenetic techniques has allowed for
more precise anatomical and cellular dissection of the role of
specific dopamine receptors in dopamine-related functions.
An important advance in understanding the complex inter-
play of basal ganglia output by direct and indirect pathway
projection neurons in regulating movement has been
achieved (Kravitz et al., 2010; Freeze et al., 2013). Application
of optogenetic and pharmacological approaches in transgenic
mice has highlighted an important role of striatal D2 recep-
tors in the concerted balance of the striatal output system and
structural plasticity (Cazorla et al., 2014). Distinct roles for
striatal neurons in the direct and indirect pathways in rein-
forcement have been shown by demonstrating that optoge-
netic stimulation of D1 receptor-expressing neurons induce
persistent reinforcement whereas stimulation of D2 receptor-
expressing neurons induce transient punishment (Kravitz
et al., 2012). The role of medial prefrontal D1 receptor-
expressing neurons in the control of food intake (Land et al.,
2014) and temporal control (Narayanan et al., 2012) has also
been demonstrated. Recent evidence indicates that optoge-
netic inhibition of D1 but not D2 receptor-expressing medium
spiny neurons in the nucleus accumbens alters cocaine-
mediated regulation of the T-lymphoma invasion and metas-
tasis 1 (Tiam1) protein, which has been implicated in
structural and synaptic plasticity (Chandra et al., 2013). Fur-
thermore, using a combination of optogenetic and chemoge-
netic approaches based on designer receptors exclusively
activated by designer drugs (DREADD) technology (Lee et al.,
2013), it has been shown that strengthening the accumbal
indirect pathway via D2 receptors promotes resilience to com-
pulsive cocaine use (Bock et al., 2013).

A role of D2 receptor-related signalling in suppressing
human osteoclastogenesis has been recently identified
(Hanami et al., 2013), which may provide a plausible mecha-
nism for the skeletal effects of antipsychotics observed in
children and adolescents (Calarge et al., 2013). A complex
role of D1 and D2 receptors has been demonstrated for epi-
leptogenesis (Bozzi and Borrelli, 2013), and cohlear functions
(Maison et al., 2012). Evidence gained from humans and mice
also indicates that D4 receptors may contribute to longevity
(Grady et al., 2013). Studies involving D4 receptor KO mice
and selective D4 receptor agonists and antagonists in animal
models of drug-seeking and drug-taking behaviours have sug-
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gested that treatments based on antagonism of the D4 recep-
tor may be effective approaches for the management of
psychostimulant and nicotine abuse (Di Ciano et al., 2014).
That presynaptic D2 receptors might be involved in cocaine-
and nicotine-induced structural plasticity in mesencephalic
dopaminergic neurons via mechanism involving ERK and Akt
signalling is also intriguing (Collo et al., 2012; 2013). A novel
mechanism for D1 receptor-mediated regulation of ERK sig-
nalling involving the tyrosine phosphatase Shp-2, that is
required for ERK activation by tyrosine kinase receptors, has
been recently shown (Fiorentini et al., 2011), and this mecha-
nism appears to be involved in L–DOPA-induced dyskinesia
in the experimental model of Parkinson’s disease (Fiorentini
et al., 2013).

Recent evidence also indicated that dopamine receptors
are involved in immune system regulation and processes
related to inflammation and autoimmune reactions. It has
been shown that astrocytic D2 receptors modulate innate
immunity through αB-crystallin, which results in suppres-
sion of neuroinflammation (Shao et al., 2013). A role of D2

receptors in renal inflammation has been demonstrated as
well (Zhang et al., 2012). It has been also observed that stimu-
lation of D5 receptors expressed on dendritic cells potentiates
Th17-mediated immunity, thus indicating that D5 receptors
are able to modulate the development of an autoimmune
response in vivo (Prado et al., 2012).

Although the role of retinal dopamine and dopamine
receptors in the regulation of vision and related processes is
well established, recent studies have uncovered previously
unappreciated mechanisms. Studies involving KO mice
lacking specific dopamine receptors have shown that in addi-
tion to the role of dopamine in suppressing rod-driven signals
in bright light, it also enhances the same signals under dim
illumination via D1 receptor-dependent sensitization of rod
bipolar cells by GABA (Herrmann et al., 2011). A role of both
D1 and D4 receptors in various dimensions of light-adapted
vision has been demonstrated as well (Jackson et al., 2012). In
a mouse model of type 1 diabetes, which develops early visual
dysfunction because of dopamine deficiencies, acute treat-
ment with either D1 or D4 receptor agonists improved overall
retinal and visual function (Aung et al., 2014). Retinal dopa-
mine plays a critical role in the development of myopia
predominantly via the D2 receptor, but there is recent evi-
dence suggesting that the balance of D2 and D1 receptor
activation is important (Feldkaemper and Schaeffel, 2013).
Evidence from KO mice suggests that not only retinal, but
also central dopamine could play a role in the regulation of
retinal function via differential involvement of D1 and D2

receptors (Lavoie et al., 2014a). Furthermore, D2 receptor-
regulated GSK3 signalling also appears to contribute to elec-
troretinogram anomalies observed in subjects at high genetic
risk for schizophrenia and bipolar disorder, suggesting that
electroretinograms can serve as a biomarker for central dopa-
mine abnormalities related to psychiatric disorders (Lavoie
et al., 2014b).

It is well known that dopamine acting through D2 recep-
tors controls lactotroph proliferation and prolactin levels;
however, the role of the D2S and D2L receptor isoforms was
unknown. Recent investigations have shown that the pres-
ence of either the D2S or D2L isoforms in vivo prevents hyper-
prolactinaemia, the development of lactotroph hyperplasia,

and tumourigenesis, all of which are observed when both
isoforms are deleted in mice (Radl et al., 2013). However, the
protective function of a single D2 receptor isoform is overrid-
den when single isoform-KO mice are challenged by chronic
estrogen treatments, suggesting that signalling from both
isoforms is necessary in conditions that simulate pathological
states (Radl et al., 2013).

Selective disruption of D2 receptors in pituitary lactotro-
phes in conditional mutant mice results in an increase in
body weight and adiposity (Perez Millan et al., 2014), indicat-
ing that D2 receptors might be involved in the metabolic side
effects of antipsychotic drug treatment such as obesity, car-
diovascular complications and increased incidence of type 2
diabetes (Reynolds and Kirk, 2010). Interestingly, the D2

receptor agonist bromocriptine has been recently approved
for clinical use for the management of type 2 diabetes melli-
tus, particularly in forms associated with cardiovascular defi-
cits (Grunberger, 2013).

The general role of D2 receptors and dopamine in endo-
crine tumours is supported by reports that D2 receptor ago-
nists are effective in controlling hormone secretion and cell
proliferation in experimental studies (Gatto and Hofland,
2011). Furthermore, dopamine agonists have been found to
be efficacious in a subgroup of patients with pituitary adeno-
mas and a few reported cases of carcinoids (Gatto and
Hofland, 2011). It has also been shown that dopamine, acting
via D2 receptors, blocks stress-mediated ovarian carcinoma
growth (Moreno-Smith et al., 2011) in part through the
antiangiogenic effect of dopamine and in part through D1

receptors that stimulates vessel stabilization by increasing
pericyte recruitment to tumour endothelial cells
(Moreno-Smith et al., 2013). Interestingly, recent unbiased
screening attempts to identify novel anti-cancer therapies
yielded dopaminergic compounds such as the D2 receptor
antagonist thioridazine, which selectively targets cancer stem
cells by inducing differentiation to overcome neoplastic self-
renewal (Sachlos et al., 2012), and perphenazine, which was
found to be effective in T-cell acute leukaemia by inducing
PP2A-mediated apoptosis (Gutierrez et al., 2014).

Influence on glutamate and
GABA transmission
One recurrent topic that has received significant attention
recently is related to signalling mechanisms involved in the
convergence of dopamine receptor-mediated signalling with
glutamatergic and GABA neurotransmission. It is well known
that, as a slow neurotransmitter, dopamine exerts its actions
through the modulation of the effects of fast neurotransmit-
ters such as glutamate and GABA. This multi-transmitter
interaction is critical for many vital functions mediated by
dopamine as well as related disorders such as schizophrenia.
As presented in Figures 1 and 2, both D1 and D2 receptors
have multiple potential signalling mechanisms that may be
involved in this modulation. Dopamine receptors can alter
the phosphorylation of critical subunits of glutamate AMPA
receptors (GluA1) and NMDA receptors (GluN2B), via the Gα
subunit-mediated cAMP-PKA-DARPP32 signalling cascade
(Dell’anno et al., 2013; Hobson et al., 2013; Song et al., 2013;
Flores-Barrera et al., 2014; Murphy et al., 2014), as well as Gαq

and Gβγ subunit-mediated PLC signalling and subsequent
Ca2+-dependent events (Jenkins and Traynelis, 2012; Jenkins
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et al., 2014). Activation of the G protein-independent Akt/
GSK3 signalling cascade by D2 receptors could lead to signifi-
cant alterations in glutamatergic signalling mediated by
NMDA and AMPA receptors (Li et al., 2009; Li and Gao,
2011a) as well as changes in kinesin-mediated AMPA receptor
trafficking (Du et al., 2010). Similar mechanisms can also
affect GABA transmission (Li et al., 2012). As discussed earlier,
the direct interaction of dopamine receptors with GluN1 and
GluN2B subunits of NMDA receptors has been demonstrated
(Fiorentini et al., 2003; Liu et al., 2006). Several mechanisms
of direct and indirect interaction of D3 receptors with gluta-
mate neurotransmission have also been documented
(Sokoloff et al., 2013).

Further understanding of the mechanisms of the intricate
interaction of dopamine receptor-mediated signalling events
with glutamate and GABA signalling could manifest into
exciting new molecular targets for novel pharmacological
approaches to dopamine-related disorders.

Search for biased ligands of
dopamine receptors
The growing realization of the complexity of signalling medi-
ated by GPCRs in general, and dopamine receptors in par-
ticular, has provided a theoretical framework for the
development of pathway-specific biased ligand pharmacol-
ogy of D2 receptors (Beaulieu et al., 2007a; Beaulieu and
Gainetdinov, 2011). In addition to the studies described
earlier (Masri et al., 2008; Allen et al., 2011), a structure–
activity analysis of pathway-specific biased agonism at D2

receptors based on aripiprazole derivatives (Chen et al., 2012)
and search for novel potential antipsychotic cariprazine
derivatives (Shonberg et al., 2013) and other D2 receptor tar-
geting compounds (Hiller et al., 2013) have been performed.
These studies have recently resulted in identification of
several functionally selective D2 receptor agonists that are
biased towards G protein- versus βArr2-dependent signalling
(Free et al., 2014; Möller et al., 2014). Future characterization
of the biochemical and behavioural effects of these biased
compounds could eventually result in the development of
improved antipsychotic drugs with reduced propensity of
undesirable side effects. It should be noted that although the
majority of current studies are focused on the development of
biased ligands targeting either G protein-dependent or βArr2-
dependent signalling mechanisms, it might be expected that
biased ligands that, for example, will specifically target one,
but not another modality of G protein-independent signal-
ling could be identified in future (Figures 1 and 2).

Allosteric modulators of dopamine receptors
Another exciting direction in the pharmacology of GPCRs
that is gaining attention recently is related to the develop-
ment of allosteric modulators (Nickols and Conn, 2014).
Although classic drug discovery approaches targeting GPCRs
have traditionally focused on developing ligands for orthos-
teric sites, which bind endogenous ligands, more recent
efforts have been aimed at modulating receptor function via
allosteric modulators, which target a site distinct from the
orthosteric site. It is expected that the development of such
positive or negative allosteric modulators or ‘bitopic’ ligands
that interact with both the allosteric and the orthosteric sites
could eventually result in increased drug selectivity for thera-

peutic action and potentially decreased adverse side effects.
Thus, a specific allosteric modulator of D2 receptors, the
peptidomimetic 3(R)-[(2(S)-pyrrolidinylcarbonyl) amino]-2-
oxo-1-pyrrolidineacetamide (PAOPA), has been recently
characterized as binding to a site on the D2 receptor that is
distinct from the endogenous ligand binding site (Tan
et al., 2013). PAOPA can influence several signalling and cel-
lular events characteristic of D2 receptor activation (Basu
et al., 2013), and in preclinical models, can attenuate
schizophrenia-like behavioural manifestations without
causing significant motor abnormalities common with many
current antipsychotics (Tan et al., 2013).

Based on the crystal structure of D3 receptors (Chien et al.,
2010) a virtual screen targeting allosteric sites of this receptor
has been recently performed (Lane et al., 2013). This screen-
ing resulted in the identification of a number of allosteric
ligands for D3 receptors, including chemically diverse com-
pounds with a variety of functional activity profiles and high
affinities and ligand efficiencies. It is believed that identifica-
tion of the allosteric structural features of D3 receptors that
are essential to selectivity and efficacy could be critical for the
identification of highly selective D3 receptor ligands, which
are notorious for their difficulty in development (Newman
et al., 2012). Allosteric modulation of certain ligands can also
occur at the level of receptor heterodimers as demonstrated
by the ability of a newly identified dopamine agonist to
negatively modulate adenosine A2A receptor binding proper-
ties by interacting with the A2A–D2 receptor heteromer
(Trincavelli et al., 2012). Interestingly, A2A receptor agonist-
induced modulation of D2 receptor agonist-induced βArr2
recruitment has been described, suggesting the involvement
of a possible A2A–D2–βArr2 complex in this allosteric modu-
lation (Borroto-Escuela et al., 2011a).

New dopamine receptor-based drugs
In addition to the clinically approved compounds targeting
dopamine receptors that were discussed in our recent review
(Beaulieu and Gainetdinov, 2011), several new compounds
have either been approved for clinical use or are in the last
stages of clinical trials. Essentially all of these compounds are
antipsychotics targeting D2 receptors. It should be noted that
no clinically approved antipsychotic drugs exist to date that
are not D2 receptor blockers. Among the newer antipsychotics
recently approved for the treatment of schizophrenia, the
most conspicuous are iloperidone, asenapine, lurasidone and
blonanserin, considered to be atypical antipsychotics (George
et al., 2013). These compounds at least partially target D2

receptors with additional influence on other receptors, par-
ticularly 5-HT2A receptors. Although they exert clear antipsy-
chotic activity, essentially all of them produce metabolic side
effects and hyperprolactinaemia, which require appropriate
monitoring (Wang et al., 2014). In addition to the
olanzapine-fluoxetine combination, quetiapine, lurasidone is
now FDA-approved for the acute treatment of bipolar depres-
sion (McIntyre et al., 2013). Among several emerging antip-
sychotic compounds, cariprazine has attracted the most
attention because this drug has partial agonist activity at D2

and D3 receptors, with a six- to eightfold higher affinity for
the human D3 receptor over the D2 receptor. Cariprazine is at
latest stages of development, and an application has been
submitted to the FDA for approval as a treatment for schizo-
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phrenia, bipolar mania and depression (Veselinovic et al.,
2013). Another interesting compound is brexpiprazole, a
novel drug candidate in clinical development for psychiatric
disorders with high affinity for D2 dopamine, 5-HT2A and
adrenoceptors (Maeda et al., 2014). Brexpiprazole was
showing significant antipsychotic-like properties in several
preclinical models suggesting that brexpiprazole is a 5-HT-
dopamine activity modulator with a unique pharmacology
that might provide novel treatment option for psychiatric
disorders.

D2 receptor antibodies in
autoimmune encephalitis
One exciting direction in the current neuropsychiatry is the
emergence of novel class of disorders related to autoantibod-
ies against critical synaptic proteins such as NMDA receptors
and D2 receptors (Lancaster and Dalmau, 2012). Remarkably,
some patients with these autoantibodies have symptoms vir-
tually indistinguishable from schizophrenia or other neu-
ropsychiatric or movement disorders. Antibodies to surface
D2 receptors were found in patients with autoimmune move-
ment and psychiatric disorders (Dale et al., 2012). D2 receptor
autoantibodies were found also in patients with Sydenham
chorea (Cox et al., 2013), and recent study reported that
herpes simplex encephalitis relapse with chorea was associ-
ated with autoantibodies against D2 receptors and the NMDA
receptors (Mohammad et al., 2014). This recently emerging
field is growing monthly, with more patients identified, and
it is expected that the autoimmune theory of neuropsychiat-
ric and movement disorders will have significant support in
the future.

Conclusions

The studies described here show the significant progress
made in understanding dopamine receptor functions, the
complexity of their signalling mechanisms and potential new
applications of dopamine receptor-based pharmacological
strategies. Using a variety of the most up-to-date approaches,
multidimensional analysis of dopamine receptor biology will
eventually provide an opportunity for the precise targeting of
desired components of post-receptor intracellular processes
either via receptor-related mechanisms or post-receptor sig-
nalling cascades, thereby providing an exciting opportunity
to target pathological processes with minimal propensity of
developing side effects. Such approaches involving ‘biased
agonism’, allosteric-based targeting of receptors and heterom-
ers and downstream intracellular signalling events could
eventually result in emergence of a new generation of dopa-
mine receptor-based therapies for a variety of dopamine-
related disorders.
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